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Functions of a complex variable

Derivative: If w = f(z) where z and w are complex

numbers, the derivative €2 at zo is

dz

o = iy [EL =10

2= 20 Z— 20

provided that the limit exists as z — 2o along any path.
If f(z) has a derivative at a point zo and at all points
in some neighbourhood of zy then f(z) is said to be
analytic at zo. If f(z) is analytic at all points in an
(open) region R then f(z) is said to be analytic in R.
Cauchy-Riemann equations: If z = x + jy and w =
f(z) = u(z,y) + jv(z,y) where z, y, v and v are real
variables, and f(z) is analytic in some region R of the
z plane, then the Cauchy-Riemann equations hold
throughout R:

ou _ Ov ou  Ov

Oxr Oy oy Oz’
If these partial derivatives are continuous within R, the
Cauchy-Riemann equations are sufficient conditions to
ensure f(z) is analytic. Furthermore, f'(z) = % —H'g—z
Singularities: If f(z) fails to be analytic at a point zo
but is analytic at some point in every neighbourhood of
20 then zo is called a singular point of f(z).
Laurent series: If f(z) is analytic on concentric circles
C; and Cy of radii 1 and r2, centred at zp, and also
analytic throughout the annular region between the cir-
cles, then for each point z within the annulus, f(z) may
be represented by the Laurent series

oo

f&)= Y enlz—2o)"

. . n=—00 .
in which ¢,, are complex constants. The series may be
written =il

E cn(z — 20)"

fz) = Z cn(z — 20)"
Poles:  The first sum on the rlght is the principal
part. If there are only a finite number of terms in the
principal part e.g.
C—m C—1
f(2) (z—zo)m+"'+(z—z0)
+ceo+ci(z—20)+ ...+ em(z—20)" + ...
in which ¢_,,, # 0, then f(2) has a singularity called a
pole of order m at z = zp. A pole of order 1 is called
a simple pole. If there are infinitely many terms in
the principal part, zo is called an isolated essential
singularity. If the principal part is zero, then f(z) has
a removable singularity at z = zp and the Laurent
series reduces to a Taylor series.
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Residues: If f(z) has a pole at z = 2 then the coef-
ficient, c¢_1, of zjz in the Laurent expansion is called
the residue of f(zg at z = 2zo. The residue at a pole of

order m is given by:
1 dm!
li —z0)" .
(m —1)! zleo {dzm*1 [(z = 20) f(z)]}
When evaluating the integrals which follow, the curve C
is traversed in an anticlockwise sense.
Cauchy’s theorem: If f(z) is analytic within and on a
simple closed curve C' then f() f(z)dz = 0.
Cauchy’s integral formula: If f(z) is analytic within
and on a simple closed curve C, and if zo is any point
within C' then

f(z) ———-dz =275 f(20)-
cZ %0

f(Z) 2= 271-.] (n)
R (z0)

The residue theorem: If f(z) is analytlc within and on
a simple closed curve C' apart from a finite number of
poles inside C', then

Further

% f(z)dz = 27j x [ sum of residues
Jc

of f(z) at the poles inside C].

Eigenvalues & Eigenvectors
An eigenvector of a square matrix A is a non-zero col-
umn vector X such that AX = A X where A, (a scalar),
is the corresponding eigenvalue. The eigenvalues are
found by solving the characteristic equation

det(A — AI) = 0.

An n x n symmetric matrix A with real elements has
only real eigenvalues and n independent eigenvectors.
The eigenvectors corresponding to distinct eigenvalues
of a real symmetric matrix are orthogonal.

The modal matrix corresponding to the n x n square
matrix A is an n X n square matrix P whose columns
are the eigenvectors of A. If n independent eigenvectors
are used to form P then P~'AP is a diagonal matrix
in which the diagonal entries are the eigenvalues of A
taken in the same order that the eigenvectors were taken
to form P.
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Fourier Series

Fourier series:
If f(¢) is periodic with period T its Fourier series is given
by

_ao > 2nmt . 2nwt
i) = 2 +; <ancos T + b, sin T )

or equivalently, if w = 27 /T,

aop > .
ft) = > + nZ::l(an cos nwt + by, sin nwt).

an and b, are called the Fourier coefficients, given by

2 [T 2
an:f/d f(t)cosndet, forn=20,1,2,3...

d+T
bn:%/d f(t)SiH@dm forn=1,2,3...

where d can be chosen to have any value.

If f(t) is odd, an =0 and f(t) = >_,2 | by sin nwt.

If f(t) is even, b, = 0 and f(t) = 2+ 7 | an cosnwt.
Parseval’s theorem:

ag + (a2 +b2).

n=1

N

[ o=

Complex form:

T2

&)= 3 cpetmT, cn:% / F(t)e= 2T gy

—T/2

n=-—o0

Half-range sine series: Given f(t) for 0 < t < %, its

odd periodic extension has period T" and Fourier series
given by

2nmt

@) = ;bn sin T

4 (772 2nmt
bn:f/o f(¢t) sin T;W dt forn=1,2,3...
Half-range cosine series: Given f(t) for 0 < ¢t < %, its
even periodic extension has period T" and Fourier series
given by

__ao = 2nmt
ft) = 2 —&—;ancos T

4 [T/2 2nmt
a"_f/(; f(t) cos T dt forn=0,1,2,3...

The Laplace transform
The Laplace transform of f(t) is F'(s) defined by
0

F(s) = £{f0)} = [ e 0,

function f(t),t >0 Laplace transform F'(s)

eat Si(l
e e
sin bt ﬁ
cos bt ﬁ
sinh bt ?E—bg
cosh bt =

t sin bt %
t cos bt %

u(t) unit step

0(t) impulse function 1

o(t —a) e ¢
£() iodi T e St f(t)dt
periodic B e A
" f(t) (—1)" L F(s)
Linearity:

L{f+ g} = LY+ L9}, L{kf} =KL{f}
Shift theorems: If £L{f(¢)} = F(s) then
L{e" f(8)} = F(s + a).
L{ut—d)f(t—d)} =e *"F(s) d>0.

u(t) is the unit step or Heaviside function.
Laplace transform of derivatives and integrals:

L{f'} = sF(s) — f(0).
L{f"} = s*F(s) — sf(0) — f'(0).

c {/Otf(t)dt} - %F(s).

The convolution theorem:
The Laplace transform of f(t) * g(t) is F(s)G(s) where

F(t) % g(t) = / F(t— N)g(N) dA = g(t) = £(2).

00

The Fourier transform
The Fourier transform of f(t) is F(w) defined by

FUOY = [ 50 = P,
The inverse Fourier transform is given by

FUPW)} = = /OO Fw)e’ dw = f(1).

= % -
function f(¢) Fourier transform F(w)
—at A

Au(t)e™ ™, a >0 P

1 —« S t S « 2sinwa

0 otherwise w
A constant 2rAS(w)
u(t)A A (mé(w) — L)
o(t) I
o(t —a) e v
cos at m(0(w+a) + 6w — a))
sin at Z(6(w —a) = 6(w+a))
sgn(t) J%
1 .
7 —jmsgn(w)
efaﬁh a>0 Ef%%ﬁ

Linearity:

Ff+9r=Fry+Hgh,  Fkf}=kF{f}
Shift theorems: If F(w) is the Fourier transform of f(t)
F{" f(t)} = F(w — a), a constant.

F{ft—a)} =e7*"F(w), « constant.
Differentiation: The Fourier transform of the
nth derivative, f™(¢), is (jw)"F(w).
Duality: If F'(w) is the Fourier transform of f(t) then
the Fourier transform of F(t) = 27 X f(—w).

Convolution and correlation:
The Fourier transform of f(t) * g(t) is F(w)G(w) where

£O <90 = [~ 7Nt = N ax=g(t) = £).
The Fourier transform of f(t)xg(t) is F(w)G(—w) where

ft)xg(t) = /Oo FNg(\ —t)dA.
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The z transform

Given a sequence, f[k], k=0,1,2..., the (one-sided)
z transform of f[k], is F(z) defined by

F(z) = Z{f[K} =) flK]="".

sequence f[k] z transform F'(z)
1 k=0
5[k] = 1
0 kK#0
1 k>0
ulk] = =
0 k<O B
k (zjl)2
—ak z
e ¢ z—e— @
k
a zia
k a.
ka (?72)7)
2 z(z+1
k =17
sin ak T arcosatl
z(z—cosa)
cosak 22—2zcosatl
—ak - ze  %sinb
e " sin bk 2% 2ze—% cos bte—29
—ak 22— ze~%cosb
e " cosbk 22— 2ze— % cos bte— 20
¢ T FTH] F(e"z)
kf[k] 25 F(2)

Linearity: If f[k] and g[k] are two sequences and c is a
constant

Z{flk] + glkl} = Z{f[K]} + Z{g[K]}.
Z{c[[k]} = cZ{[[K]}.
First shift theorem:
Z{flk+1]} = 2F(2) - 2f[0].
Z{flk+2)} = 22F(2) — 22 (0] - 2f[1].
Second shift theorem:
Z{f[k —iulk — 4]} = 27" F(2), i=1,2,3...

where F'(z) is the z transform of f[k] and u[k] is the unit
step sequence.

Convolution: Z{f[k] x g[k]} = F(2)G(2).

where

k
FIK] + glk] = > flmlglk — m).

m=0

Discrete Fourier transform (dft)

Given a sequence of N terms

{9[0], g[1],9[2], ..., g[N — 1]}

its discrete Fourier transform (dft) is the sequence

{(G[0],G[1,G[2), ..., GIN — 1]}

where
N-1 _
Gl = glnle """,
n=0
Further
1 Nt 4
g[n} _ N G[k}ez]nkﬂ'/]\]'

£
Il

0

Maclaurin & Taylor Series

Maclaurin Series:

F@) = FO)+ EF O+ L 0+ 4 T+

Taylor series (one variable):

7@ = f@) + Co D iy + B gy

(x—a)

r!

s £ a) + ...

Taylor series (two variables): For a function f(z,y) of
two variables

faw) = fav+ g (@-ag +w-ng) fad

+% ((x—a)g—x +(y—b)a%> Fla,b) + ...
9 )
ox

L +(yfb)a—y>rf(a,b)+...

e

Stationary points in two variables: For z = f(z,y),

. . .0
stationary points (a,b) are located by solving of =0

ox
of PFf (9PN
— =0. Define A = —= — — .
and By 0. Define 922 Oy? 920y at (a, b)
The type of stationary point is given by:

A<O saddle point.
62
A>0and —5 >0 minimum point.

ox?

2
A >0and — <0 maximum point.

ox?

Numerical Integration
Simpson’s rule: for n even, and h = *2-%0,
/mn f(z)dz ~ g (fo+4f1+2f2 +4fs+

oot 2o+ Afr1 A+ ).

. — 4r(4)
Truncation error ~ 7%.

n point Gauss-Legendre formula:

1 n
[ t@de > wise).

-1 i=1
n Zq W;
2 +0.577350  1.000000

3 £0.774597  0.555556
0.0 0.888889

4 £0.861136 0.347855
£0.339981  0.652145
5 +£0.906180 0.236927
0.0 0.568889
+0.538469  0.478629

Ordinary differential equations
To solve Z—z = f(z,y) :

Euler’s method:

Yrr1 = Yr + hf(@r, yr).
Modified Euler method:

y7(~121 =yr+hfr fﬁi)l = f(zrt1, yﬁ%)-

c h
Z/SJL =Yr+ §(fr + fr(i)l)
Runge-Kutta method:

h k
b= R ), ko= hfGe B+ ),
h ko
kg:hf(xr—l—g’yr—i_?)’ k4 :hf(mr‘i‘h»yr‘f'kS).

1
Yrr1 = Yr + g(kl + 2ko + 2ks + k4).
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