

Factorising simple expressions

mc-bus-factorsimple-2009-1

Introduction

Before studying this material you must be familiar with the process of 'removing brackets' as outlined on leaflets $Removing\ Brackets\ 1\ \&\ 2$. This is because factorising can be thought of as reversing the process of removing brackets. When we factorise an expression it is written as a product of two or more terms, and these will normally involve brackets.

Products and Factors

To obtain the **product** of two numbers they are <u>multiplied</u> together. For example the product of 3 and 4 is 3×4 which equals 12. The numbers which are multiplied together are called factors. We say that 3 and 4 are both factors of 12.

Example

The product of x and y is xy.

The product of 5x and 3y is 15xy.

Example

2x and 5y are factors of 10xy since when we multiply 2x by 5y we obtain 10xy.

(x+1) and (x+2) are factors of x^2+3x+2 because when we multiply (x+1) by (x+2) we obtain x^2+3x+2 .

3 and x-5 are factors of 3x-15 because

$$3(x-5) = 3x - 15$$

Common Factors

Sometimes, if we study two expressions to find their factors, we might note that some of the factors are the same. These factors are called **common factors**.

Example

Consider the numbers 18 and 12.

Both 6 and 3 are factors of 18 because $6 \times 3 = 18$.

Both 6 and 2 are factors of 12 because $6 \times 2 = 12$.

So, 18 and 12 share a common factor, namely 6.

In fact 18 and 12 share other common factors. Can you find them ?

Example

The number 10 and the expression 15x share a common factor of 5.

Note that $10 = 5 \times 2$, and $15x = 5 \times 3x$. Hence 5 is a common factor.

Example

 $3a^2$ and 5a share a common factor of a since

 $3a^2 = 3a \times a$ and $5a = 5 \times a$. Hence a is a common factor.

Example

 $8x^2$ and 12x share a common factor of 4x since

 $8x^2 = 4x \times 2x$ and $12x = 3 \times 4x$. Hence 4x is a common factor.

Factorising

To factorise an expression containing two or more terms it is necessary to look for factors which are common to the different terms. Once found, these common factors are written outside a bracketed term. It is ALWAYS possible to check your answers when you factorise by simply removing the brackets again, so you shouldn't get them wrong.

Example

Factorise 15x + 10.

Solution

First we look for any factors which are common to both 15x and 10. The common factor here is 5. So the original expression can be written

$$15x + 10 = 5(3x) + 5(2)$$

which shows clearly the common factor. This common factor is written outside a bracketed term, the remaining quantities being placed inside the bracket:

$$15x + 10 = 5(3x + 2)$$

and the expression has been factorised. We say that the factors of 15x + 10 are 5 and 3x + 2. Your answer can be checked by removing the brackets again to show

$$5(3x+2) = 5(3x) + 5(2) = 15x + 10$$

2. 21 + 7x, 3. xy - 8x, 4. 4x - 8xy

Exercises

Factorise each of the following:

Answers

1. 10x + 5y,

1.
$$5(2x+y)$$
, 2. $7(3+x)$, 3. $x(y-8)$, 4. $4x(1-2y)$.