

Rearranging formulas 2

mc-bus-formulas2-2009-1

Introduction

This leaflet develops the work started on leaflet *Rearranging Formulas 1*, and shows how more complicated formulas can be rearranged.

Further transposition

Remember that when you are trying to rearrange, or **transpose**, a formula, the following operations are allowed.

- add or subtract the same quantity to or from both sides
- multiply or divide both sides by the same quantity

A further group of operations is also permissible.

A formula remains balanced if we perform the same operation to both sides of it. For example, we can square both sides, we can square-root both sides. We can find the logarithm of both sides. Study the following examples.

Example

Transpose the formula $p = \sqrt{q}$ to make q the subject.

Solution

Here we need to obtain q on its own. To do this we must find a way of removing the square root sign. This can be achieved by squaring both sides since

$$(\sqrt{q})^2 = q$$

So.

$$\begin{array}{rcl} p & = & \sqrt{q} \\ p^2 & = & q & \quad \text{by squaring both sides} \end{array}$$

Finally, $q = p^2$, and we have succeeded in making q the subject of the formula.

Example

Transpose $p = \sqrt{a+b}$ to make b the subject.

Solution

$$\begin{array}{rcl} p & = & \sqrt{a+b} \\ p^2 & = & a+b & \text{by squaring both sides} \\ p^2-a & = & b \end{array}$$

Finally, $b=p^2-a$, and we have succeeded in making b the subject of the formula.

Example

Make x the subject of the formula $v = \frac{k}{\sqrt{x}}$.

Solution

$$\begin{array}{rcl} v & = & \frac{k}{\sqrt{x}} \\ v^2 & = & \frac{k^2}{x} & \text{by squaring both sides} \\ xv^2 & = & k^2 & \text{by multiplying both sides by } x \\ x & = & \frac{k^2}{v^2} & \text{by dividing both sides by } v^2 \end{array}$$

and we have succeeded in making x the subject of the formula.

Example

Transpose the formula $R = Q(1+i)^3$ for i.

Solution

This must be carried out carefully, in stages, until we obtain i on its own.

$$R = Q(1+i)^3$$

$$\frac{R}{Q} = (1+i)^3$$
 by dividing both sides by Q
$$^3\sqrt{\frac{R}{Q}} = 1+i$$
 by taking the cube root of both sides
$$i = \sqrt[3]{\frac{R}{Q}}-1$$
 by subtracting 1 from each side

Exercises

- 1. Make r the subject of the formula $V=\frac{4}{3}\pi r^3$.
- 2. Make x the subject of the formula $y = 4 x^2$.
- 3. Make s the subject of the formula $v^2 = u^2 + 2as$
- 4. Make P the subject of the formula $S = P(1+i)^n$. Try making i the subject.

Answers

1.
$$r = \sqrt[3]{\frac{3V}{4\pi}}$$
. 2. $x = \sqrt{4-y}$. 3. $s = \frac{v^2 - u^2}{2a}$. 4. $P = \frac{S}{(1+i)^n}$. $i = \sqrt[n]{\frac{S}{P}} - 1$